Investigador principal

Miembros externos

David H Pashley (Georgia Regents University,Augusta, USA),Franklin Tay (Georgia Regents University, Augusta, USA),Manuel Toledano Pérez (Universidad de Granada),Raquel Osorio (Universidad de Granada),Víctor Feitosa (Universidade Federal do Ceará. Brazil),Lidiany Rodrigues (Universidade Federal do Ceará, Brazil),Lidiany Rodrigues (Universidade federal do Caerá, Brazil), David Gillam (Queen Mary, University of London),Timothy F. Watson (King's College London),Francesco Mannocci (King's College London), Arzu Tezvergil-Mutluay (Institute of Dentistry, University of Turku, Finland),Angelo Putignano (Polytechnic of Marche, School of Dentistry, Ancona, Italy),Delia Brauer (Otto-Schott-Institut Friedrich-Schiller-Universität Jena, Germany), Marcelo Giannini (Universidade UNICAMP de Piracicaba, Brasil), Mário A. Sinhoreti (Universidade UNICAMP de Piracicaba, Brasil),Jeffrey.W.Stansbury (Biomaterials Research Center, University of Colorado, USA)

Doctorandos

Elisabet Palazón Radford,Ines Torres Osca,Encarna Piquer Maño

Líneas de investigación

Área conocimiento ANEP: Tecnología médica y  Patología bucal

Códigos UNESCO: 3314.99 (Biomateriales Dentales); 3207.99 (Tejidos duro dentales)

Nombre: Ingeniería de tejidos dentarios duros in situ por biomateriales adhesivo inteligentes que restablece las propiedades biomecánicas de los tejidos dentarios desmineralizados.

Palabras clave: Adhesión, Bioingeniería, Bioactivo, Biomimético, Colágeno, Degradación, Dentina, Polímeros, In-situ, Tejidos Dentarios, Remineralización, Restauración.             

Resumen: La caries dental es una enfermedad que depende del estilo de vida y de los hábitos adquiridos, con un componente bacteriano, que afecta a los tejidos duros dentales con un índice de casi  un 80% en los niños y el 90% en los adultos. Por ejemplo, en Estados Unidos y también in España, se gastan aproximadamente 100 millones de Euros anualmente en el servicio dental particular. In Inglaterra y Gales los gastos de la seguridad social para el tratamiento de esta enfermedad pueden llegar a costar más de 100 millones de esterlinas por año.  

En la desmineralización de la dentina aparte de la caries un papel muy importante juegan los sistemas adhesivos de resina. La adhesión entre la resina del adhesivo y la dentina se logra a través de la retención micromecánica por la penetración del adhesivo entre las fibras de colágeno expuestas en la dentina desmineralizada parcial o totalmente. Esta desmineralización que expone las fibras de colágeno se consigue mediante el acondicionamiento de la dentina con ácidos o monómeros  ácidos que se encuentran dentro de los sistemas de adhesión de auto-acondicionamiento. 

En odontología restauradora, más del 70% de los tratamientos consiste en  la sustitución y la reparación de las restauraciones existentes en boca porque la adhesión de los materiales restauradores a los tejidos duros se degrada con el paso del tiempo.  Esto se debe a la utilización de materiales sintéticos biocompatibles. Esto es debido a la utilización de materiales sintéticos, incompatibles que se aplican en un entorno biológico que no es el idóneo para su colocación siempre después de una eliminación ultraconservadora de la caries a la cual se le junta la no utilización de métodos biomiméticos que ayudan la adhesión, la  conservación o incluso a veces mejorar, el tejido reparado. Los materiales restauradores que liberan iones, cuando se aplican, solo pueden recuperar una parte de la funcionalidad biomecánica de la dentina cariada  debido a la pobre asociación mineral a nivel intrafibrilar. La recuperación total de la funcionalidad biomecánica de la dentina solo se puede conseguir después de la remineralización biomimética intrafibrilar con técnica de ingeniería tisular in situ. Si esta condición no se cumple el proceso de bio-mineralización debe considerarse incompleto. Además, las fibras de colágeno que se han remineralizado de forma inadecuada sufren una degradación por las bacterias o la activación  por parte del ácido de metaloproteinasas endogenas (MMPs) que se encuentran en la dentina.

Este será el primer proyecto en utilizar conceptos de ingeniería tisular in situ de bio-mineralización de grandes cavidades en los dientes y  superar los problemas que existen durante la restauración de grandes destrucciones cariosas mediante procedimientos de rehabilitación adhesiva mínimamente invasivos. Los clínicos serán capaces de aplicar sistemas adhesivos durante los tratamientos que serán capaces de biomineralizar la dentina, que alargaran la vida de las restauraciones de composite. Esto mejorará la calidad de las restauraciones dentales en clínica aumentando la rentabilidad del tratamiento.

Los objetivos de nuestra investigación serán de generar metodología innovadoras de ingeniería de tejidos in situ por biomateriales adhesivo inteligentes que restablece las propiedades biomecánicas de los tejidos dentarios desmineralizados in conjunción con procederás de rehabilitación dentales mínimamente invasiva. 

Esta técnica será capaz de:

  • Liberar iones y componentes biomiméticos 
  • Formar precursores de nano-nucleación de apatita en vez de micro- aglomerados.
  • Bio-remineralización jerárquica  de colágeno extra e intrafibrilar.
  • Inducir diferenciación de células estaminales células a los odontoblastos/fibroblastos.
  • Presentar una actividad antibacteriana en biofilm órale cariogenico
  • Recuperación de la funcionalidad biomecánica de las interfases adhesivas desmineralizadas alargando la vida útil de las restauraciones dentales.

Name: In Situ dental tissues engineering and therapeutic minimally invasive adhesive rehabilitation  

Key Words: Adhesion, Bio-engineering, Bioactive, Biomimetic, Collagen, Degradation, Dentine, Polymers In-situ; Remineralization, Rehabilitation

Summary: Dental caries is a behavioural, lifestyle disease with a bacterial component, affecting the dental hard tissues of almost 80% of children and 90% of adults. For instance, In the United States alone, more than 100 million dollars is spent annually on dental service, while the treatment of dental caries in England and Wales costs the NHS more than 100 million per annum. Apart from caries, resin-dentine bonding is another major reason for dentine demineralisation. The formation of resin-dentin bonds is accomplished predominantly by micromechanical retention via resin penetration and entanglement of exposed collagen fibrils in the partially or completely demineralized dentin. This is achieved by etching dentin with acids or acidic resin monomers derived from self-etching primers/adhesives to expose the collagen fibrils. Unfortunately, more than 70% of all restorative dentistry comprises of replacement/repair of existing restorations, as bonding to dental hard tissues still suffers from long-term interfacial failure. This is due to the use of synthetic, bio-incompatible materials placed in a hostile biological environment subsequent to ultra-conservative caries excavation, without using therapeutic and biomimetic methods to bond and maintain, or even improve, the repaired tissue.

Commonly-used ion-releasing restorative materials may only recover a small part of the biomechanical functionality of the carious dentine due to poor mineral association at the intrafibrillar level. The total re-establishment of biomechanical dentine functionality is only possible subsequent to intrafibrillar biomimetic remineralisation: if this condition is not satisfied then the biomineralisation process must be considered incomplete. Furthermore, inadequately remineralised collagen fibrils undergo degradation by bacterial or acid-activated dentine endogenous matrix metalloproteinases (MMPs).

This will be the first project to use high-impact In Situ bio-engineered concepts for bio-mineralise and restoring large cavities in teeth, overcoming existing problems that cannot be adequately addressed during the restoration of large carious dentine cavities with minimally invasive procedures. Clinicians will be able to apply therapeutic bonding materials capable of biomineralising carious dentine providing a durable foundation for resin composite restorations. This will improve the quality of dental restorations in routine practice, promoting cost-effective care.

The main aims of this research group focus on the generation of revolutionary techniques based on In Situ dental tissue engineering concepts and using smart resin-based biomaterials able to reestablish the biomechanical properties of mineral-depleted dental hard tissues in conjunction with minimally invasive dentistry.

These innovative approaches will be able to induce:

- Apatite nano-nucleation precursors (ANP) rather than micro-cluster agglomeration

- Hierarchical collagen bioremineralisation at intra- and extra-fibrillar level

- Differentiation of pulpal cells into reparative odontoblasts/fibroblast-like cells

- Bacteriostatic and/or antibacterial activity on caries biofilms

- Recovery of the biomechanical functionality of mineral-depleted bonded interfaces providing a long-term foundation for minimally invasive dental restorations.  

Título del proyecto: In Vitro Shear Bond Strength of Modern Luting Agent to KATANA Zirconia t 

Investigador responsable: Salvatore Sauro

Entidad financiadora: KURARAY

Duración - Enero 2019 – Diciembre  2019

Cuantía de la subvención: EURO 6000,00

 

 

Título del proyecto: Effect of mechanical load cycling on the interface morphology and microtensile bond strength of an experimental light-curing glass ionomer cement restorative material in applied after burs or bioglass air-abrasion treatment 

Investigador responsable: Salvatore Sauro

Entidad financiadora: VOCO

Duración - Enero 2017 - Julio 2017

 

Título del proyecto: Premio Gaceta Dental - Remineralización biomimética y biocompatibilidad de un sistema de curado por luz con microrrelleno bioactivo embebido con ácido 4-oxoheptanodioico

Investigador responsable: Salvatore Sauro, Arlinda Luzi.

Entidad financiadora: Gaceta dental

Duración – Septiembre 2014

 

Título del proyecto: Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, de la Secretaría de Estado de Investigación, Desarrollo e Innovación

Investigador responsable: Salvatore Sauro, Arlinda Luzi.

Entidad financiadora: CEU.UCH

Duración – desde 31 2015 agosto hasta 15 Septiembre 2015

 

Título del proyecto: Consolidación de Indicadores CEU-UCH 2015-2016; Ref. INDI1527.

Investigador responsable: Salvatore Sauro, Arlinda Luzi.

Entidad financiadora: CEU.UCH

Duración – desde 31 Agosto 2016 hasta 15 Septiembre 2016

 

 

  1. Strategies to reduce the risk of reinfection and cross-contamination in endodontics.  M Giovarruscio, S Sauro, I Makeeva, F Foschi. Clinical Dentistry Reviewed 3 (1), 8 2019
  2. Remineralization of early enamel caries lesions induced by bioactive particles: an in vitro speckle analysis.  RA Sfalcin, JVP da Silva, VO Pessoa, J Santos, SRG Olivan et al. Photodiagnosis and photodynamic therapy. 2019
  3. Boron Nitride Nanotubes as Filler for Resin-Based Dental Sealants FR Bohns, FW Degrazia, G de Souza Balbinot, VCB Leitune, et al. Scientific reports 9 (1), 7710, 2019
  4. Degradation of Adhesive-Dentin Interfaces Created Using Different Bonding Strategies after Five-year Simulated Pulpal Pressure. VP Feitosa, S Sauro, W Zenobi, JC Silva, G Abuna, B Van Meerbeek, et al. Journal of Adhesive Dentistry 21 (3), 2019
  5. Remineralization effects of conventional and experimental ion-releasing materials in chemically or bacterially-induced dentin caries lesions F Schwendicke, A Al-Abdi, AP Moscardó, AF Cascales, S Sauro Dental Materials 35 (5), 772-779, 1, 2019
  6. Halloysite nanotubes loaded with alkyl trimethyl ammonium bromide as antibacterial agent for root canal sealers. JC Monteiro, IM Garcia, VCB Leitune, F Visioli, G de Souza Balbinot, et al. Dental Materials 35 (5), 789-796, 2019
  7. Co-Blend Application Mode of Bulk Fill Composite Resin M Al-Nabulsi, A Daud, C Yiu, H Omar, S Sauro, A Fawzy, U Daood Materials 12 (16), 2504, 2019
  8. Influences of Different Air-Inhibition Coatings on Monomer Release, Microhardness, and Color Stability of Two Composite Materials L Marigo, G Nocca, G Fiorenzano, C Callà, R Castagnola, M Cordaro, et al. BioMed research international 2019           
  9. Bioactivity of Bioceramic Materials Used in the Dentin-Pulp Complex Therapy: A Systematic Review. JL Sanz, FJ Rodríguez-Lozano, C Llena, S Sauro, L Forner Materials 12 (7), 1015, 1, 2019
  10. Effects of Ions-Releasing Restorative Materials on the Dentine Bonding Longevity of Modern Universal Adhesives after Load-Cycle and Prolonged Artificial Saliva Aging. S Sauro, I Makeeva, V Faus-Matoses, F Foschi, M Giovarruscio, et a. Materials 12 (5), 722, 2019
  11. Antibacterial and Remineralizing Fillers in Experimental Orthodontic Adhesives CJ Ferreira, VCB Leitune, GS Balbinot, FW Degrazia, M Arakelyan, et al.  Materials 12 (4), 652, 1, 2019
  12. Effects of polyacrylic acid pre-treatment on bonded-dentine interfaces created with a modern bioactive resin-modified glass ionomer cement and subjected to cycling Mechanical. S Sauro, V Faus-Matoses, I Makeeva, J Nuñez Martí, et al. Materials 11 (10), 1884, 1, 2018
  13. Physicochemical and microbiological assessment of an experimental composite doped with triclosan-loaded halloysite nanotubes. D Cunha, N Rodrigues, L Souza, D Lomonaco, F Rodrigues, F Degrazia, et al. Materials 11 (7), 1080, 7, 2018
  14. The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on the interfacial characteristics of resin-modified glass ionomer cements. S Sauro, T Watson, AP Moscardó, A Luzi, VP Feitosa, A Banerjee. Journal of dentistry 73, 32-39, 2, 2018
  15. Cellular differentiation, bioactive and mechanical properties of experimental light-curing pulp protection materials. S Sauro, A Babbar, B Gharibi, VP Feitosa, RM Carvalho, LKA Rodrigues, et al. Dental Materials 34 (6), 868-878, 2, 2018
  16. Multi-functional nano-adhesive releasing therapeutic ions for MMP-deactivation and remineralisation SK Jun, SA Yang, YJ Kim, A El-Fiqi, N Mandakhbayar, DS Kim, J Roh, et al. Scientific reports 8 (1), 5663, 6, 2018
  17. Effect of different conditioning/deproteinization protocols on the bond strength and degree of conversion of self-adhesive resin cements applied to dentin. NS Rodrigues, LC de Souza, VP Feitosa, AD Loguercio, C D'Arcangelo, et al. International Journal of Adhesion and Adhesives 81, 98-104, 3, 2018
  18. Polymerisation, antibacterial and bioactivity properties of experimental orthodontic adhesives containing triclosan-loaded halloysite nanotubes FW Degrazia, B Genari, VCB Leitune, RA Arthur, SA Luxan, SMW Samuel, et al. Journal of dentistry 69, 77-82   10, 2018
  19. The effect of zoledronate-containing primer on dentin bonding of a universal adhesive. W Zenobi, VP Feitosa, MEM Moura, C D’arcangelo et al. Journal of the Mechanical Behavior of Biomedical Materials Materials 77, 199-204, 2018
  20. Bonding to Tooth Tissues. V Miletic, S Sauro. (Chapter book) Dental Composite Materials for Direct Restorations, 199-218,          2018
  21. Stress distribution in carbon-post applied with different composite core materials: a three-dimensional finite element analysis. E Conserva, U Consolo, A Gimenez Sancho, F Foschi, G Paolone, et. al. Journal of adhesion science and Technology 31 (22), 2435-2444, 2017
  22. An in vitro investigation of pre?treatment effects before fissure sealing. M Bagheri, P Pilecki, S Sauro, M Sherriff, TF Watson, MT Hosey. International journal of paediatric dentistry 27 (6), 514-522
  23. Effects of composites containing bioactive glasses on demineralized dentin A Tezvergil-Mutluay, R Seseogullari-Dirihan, VP Feitosa, G Cama, et al. Journal of dental research 96 (9), 999-1005. 29. 2017
  24. Adhesion Evaluation of Dentin Sealing, Micropermeability, and Bond Strength of Current HEMA-free Adhesives to Dentin. R Bacelar-Sá, S Sauro, G Abuna, RP Vitti, T Nikaido, J Tagami, et al. Journal of Adhesive Dentistry 19 (4), 2, 2017.
  25. Influence of bioactive particles on the chemical-mechanical properties of experimental enamel resin infiltrants RA Sfalcin, AB Correr, LR Morbidelli, TGF Araújo, VP Feitosa, et al. Clinical oral investigations 21 (6), 2143-2151, 8,  2017
  26. Effects of neutralizing or antioxidant agents on the consequences induced by enamel bleaching agents in immediate resin composite restorations. NR Svizero, LAC Romani, IBL Soares, JE Moraes, MAS Agulhari, et al. Journal of adhesion science and Technology 31 (9), 965-976, 1, 2017
  27. Bioactivity, cytocompatibility and thermal properties of experimental Bioglass-reinforced composites as potential root-canal filling materials. RA Alhashimi, F Mannocci, S Sauro. Journal of the mechanical behavior of biomedical materials 69, 355-361, 2017
  28. Innovative root-end filling materials based on calcium-silicates and calcium-phosphates. A Abedi-Amin, A Luzi, M Giovarruscio, G Paolone, A Darvizeh, VV Agulló, et al. Journal of Materials Science: Materials in Medicine 28 (2), 31, 3, 2017
  29. Self-Etching Enamel Bonding Using Acidic Functional Monomers with Different-length Carbon Chains and Hydrophilicity. V Hass, G Abuna, VP Feitosa, EC Martini, MA Sinhoreti, RF Carvalho, et al. J. Adhes. Dent 19, 497-505, 4,  2017
  30. Effect of photodynamic therapy and laser alone as adjunct to scaling and root planing on gingival crevicular fluid inflammatory proteins in periodontal disease: a systematic review. Z Akram, T Abduljabbar, S Sauro, U Daood Photodiagnosis and photodynamic therapy 16, 142-153, 30, 2016
  31. Bonding performance of experimental bioactive/biomimetic self-etch adhesives doped with calcium-phosphate fillers and biomimetic analogs of phosphoproteins. G Abuna, VP Feitosa, AB Correr, G Cama, M Giannini, MA Sinhoreti, et al. Journal of dentistry 52, 79-86, 26, 2016
  32. Physicochemical and bioactive properties of innovative resin-based materials containing functional halloysite-nanotubes fillers. FW Degrazia, VCB Leitune, AS Takimi, FM Collares, S Sauro. Dental Materials 32 (9), 1133-1143, 2016
  33. Strategies to stabilise dentine-bonded interfaces through remineralising operative approaches–State of The Art. S Sauro, DH Pashley. International Journal of Adhesion and Adhesives 69, 39-57, 36, 2016
  34. Polyaspartic acid enhances dentine remineralization bonded with a zinc?doped Portland?based resin cement. R Osorio, S Sauro, TF Watson, M Toledano. International endodontic journal 49 (9), 874-883, 2016
  35. Modifications in glass ionomer cements: Nano-sized fillers and bioactive nanoceramics S Najeeb, Z Khurshid, M Zafar, A Khan, S Zohaib, J Martí, S Sauro, et al. International journal of molecular sciences 17 (7), 1134-44, 2016
  36. Novel hydroxyapatite nanorods improve anti-caries efficacy of enamel infiltrants DMA Neto, EV Carvalho, EA Rodrigues, VP Feitosa, S Sauro, G Mele, et al. Dental Materials 32 (6), 784-793, 15, 2016
  37. Experimental polyethylene–hydroxyapatite carrier?based endodontic system: an in vitro study on dynamic thermomechanical properties, sealing ability, and measurements of micro. RA Alhashimi, F Mannocci, S Sauro. European journal of oral sciences 124 (3), 279-286, 3, 2016
  38. Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites PHP D’Alpino, N da Rocha Svizero, OB Júnior, CJ Valduga et al. Clinical oral investigations 20 (5), 1011-1019, 2016
  39. Combined application of polyacrylate scaffold and lipoic acid treatment promotes neural tissue reparation after brain injury B Rocamonde, S Paradells, MA Garcia Esparza, MS Vives, S Sauro, et al. Brain injury 30 (2), 208-216, 2016
  40. Di-calcium phosphate and phytosphingosine as an innovative acid-resistant treatment to occlude dentine tubules S Sauro, CY Lin, FJ Bikker, G Cama, P Dubruel, JM Soria, D Gillam. Caries research 50 (3), 303-309, 4, 2016
  41. Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. GC Padovani, VP Feitosa, S Sauro, FR Tay, G Durán, AJ Paula, N Durán. Trends in biotechnology 33 (11), 621-636          81, 2015
  42. In-situ nano-silica deposition and air-abrasion with Bioglass 45S5 or aluminium oxide: Effects on methacrylate bonding to yttria-tetragonal zirconia polycrystal
  43. A Darvizeh, A Luzi, AA Amin, A Oliveira-Ogliari, FA Ogliari, VP Feitosa, et al. International Journal of Adhesion and Adhesives 62, 32-39, 2015
  44. Influence of phosphoproteins’ biomimetic analogs on remineralization of mineral-depleted resin–dentin interfaces created with ion-releasing resin-based systems. S Sauro, R Osorio, TF Watson, M Toledano. Dental Materials 31 (7), 759-777, 52, 2015
  45. Effects of simulated pulpal pressure, mechanical and thermocycling challenge on the microtensile bond strength of resin luting cements. A Bacchi, G Abuna, RL Consani, MA Sinhoreti, S Sauro, VP Feitosa.  International Journal of Adhesion and Adhesives 60, 69-74, 2015
  46. Impact of smoking on guided tissue regeneration using a biocomposite poly (lactic-co-glycolic) acid/sub-micron size hydroxyapatite with a rubber dam as an alternative barrier. D Stramazzotti, C Coiana, A Zizzi, L Spazzafumo, S Sauro, AB D’Angelo, et al. International journal of immunopathology and pharmacology 28 (1), 21-28, 3, 2015
  47. Novel hydroxyapatite nanorods improve the anti-caries efficacy of enamel infiltrants. VP Feitosa, DMA Neto, EV Carvalho, G Mele, L Carbone, S Sauro, et al. Dent Mater. 2016 Jun;32(6):784-93
  48. Effect of antioxidants on the dentin interface bond stability of adhesives exposed to hydrolytic degradation. Gotti VB, Feitosa VP, Sauro S, Correr-Sobrinho L, Leal FB, Stansbury JW, Correr AB. J Adhes Dent. 2015 Feb;17(1):35-44.
  49. Methacrylate bonding to zirconia by in situ silica nanoparticle surface deposition A Oliveira-Ogliari, FM Collares, VP Feitosa, S Sauro, FA Ogliari, et al. Dental Materials 31 (1), 68-76, 24, 2015
  50. Impact of hydrophilicity and length of spacer chains on the bonding of functional monomers. VP Feitosa, S Sauro, FA Ogliari, AO Ogliari, K Yoshihara, CH Zanchi, et al. Dental Materials 30 (12), e317-e323, 2014
  51. Zinc incorporation improves biological activity of beta-tricalcium silicate resin–based cement. R Osorio, M Yamauti, S Sauro, TF Watson, M Toledano. Journal of endodontics 40 (11), 1840-1845, 2014
  52. Indirect resin composite restorations bonded to dentin using self-adhesive resin cements applied with an electric current-assisted method, VB Gotti, VP Feitosa, S Sauro, L Correr-Sobrinho, AB Correr American journal of dentistry 27 (5), 1, 2014
  53. Zoledronate and ion-releasing resins impair dentin collagen degradation. A Tezvergil-Mutluay, R Seseogullari-Dirihan, VP Feitosa, FR Tay, et al. Journal of dental research 93 (10), 999-1004, 2014
  54. Bonding ability of experimental resin-based materials containing (ion-releasing)-microfillers applied on water-wet or ethanol-wet root canal dentine. A Zavattini, VP Feitosa, F Mannocci, F Foschi, A Babbar, A Luzi, L Ottria, et al, International Journal of Adhesion and Adhesives 54, 214-223, 7, 2014
  55. Load cycling enhances bioactivity at the resin–dentin interface M Toledano, FS Aguilera, S Sauro, I Cabello, E Osorio, R Osorio Dental Materials 30 (7), e169-e18, 35, 2014
  56. Polycarboxylated microfillers incorporated into light-curable resin-based dental adhesives evoke remineralization at the mineral-depleted dentin. Z Wang, Y Shen, M Haapasalo, J Wang, T Jiang, Y Wang, TF Watson, et al. Journal of Biomaterials Science, Polymer Edition 25 (7), 679-697, 11, 2014.
  57. The role of spacer carbon chain in acidic functional monomers on the physicochemical properties of self-etch dental adhesives. VP Feitosa, S Sauro, FA Ogliari, JW Stansbury, GH Carpenter, TF Watson, et al. Journal of dentistry 42 (5), 565-574, 20, 2014
  58. Chemical interaction of 10-MDP (methacryloyloxi-decyl-dihydrogen-phosphate) in zinc-doped self-etch adhesives. VP Feitosa, C Pomacóndor-Hernández, FA Ogliari, F Leal, AB Correr, et al. Journal of dentistry 42 (3), 359-365, 2014
  59. Magnesium phosphate cements for endodontic applications with improved long-term sealing ability. F Aguilera, MP Ginebra, N Manzanares, G Mestres, R Osorio, S Sauro, et al. International endodontic journal 47 (2), 127-139          26        2014
  60. Can the hydrophilicity of functional monomers affect chemical interaction? VP Feitosa, FA Ogliari, B Van Meerbeek, TF Watson, K Yoshihara, Journal of dental research 93 (2), 201-206, 2014
  61. In vitro mechanical stimulation promoted remineralization at the resin/dentin interface M Toledano, E Osorio, FS Aguilera, S Sauro, I Cabello, R Osorio. Journal of the mechanical behavior of biomedical materials 30, 61-74, 2014